2,319 research outputs found

    Disorder Induced Effects on the Critical Current Density of Iron Pnictide BaFe_1.8 Co_0.2 As_2 single crystals

    Full text link
    Investigating the role of disorder in superconductors is an essential part of characterizing the fundamental superconducting properties as well as assessing potential applications of the material. In most cases, the information available on the defect matrix is poor, making such studies difficult, but the situation can be improved by introducing defects in a controlled way, as provided by neutron irradiation. In this work, we analyze the effects of neutron irradiation on a Ba(Fe1x_{1-x}Cox_x)2_2As2_2 single crystal. We mainly concentrate on the magnetic properties which were determined by magnetometry. Introducing disorder by neutron irradiation leads to significant effects on both the reversible and the irreversible magnetic properties, such as the transition temperature, the upper critical field, the anisotropy, and the critical current density. The results are discussed in detail by comparing them with the properties in the unirradiated state.Comment: accepted for Ph

    How Advanced Change Patterns Impact the Process of Process Modeling

    Get PDF
    Process model quality has been an area of considerable research efforts. In this context, correctness-by-construction as enabled by change patterns provides promising perspectives. While the process of process modeling (PPM) based on change primitives has been thoroughly investigated, only little is known about the PPM based on change patterns. In particular, it is unclear what set of change patterns should be provided and how the available change pattern set impacts the PPM. To obtain a better understanding of the latter as well as the (subjective) perceptions of process modelers, the arising challenges, and the pros and cons of different change pattern sets we conduct a controlled experiment. Our results indicate that process modelers face similar challenges irrespective of the used change pattern set (core pattern set versus extended pattern set, which adds two advanced change patterns to the core patterns set). An extended change pattern set, however, is perceived as more difficult to use, yielding a higher mental effort. Moreover, our results indicate that more advanced patterns were only used to a limited extent and frequently applied incorrectly, thus, lowering the potential benefits of an extended pattern set

    The effects of water and microstructure on the performance of polymer electrolyte fuel cells

    No full text
    n this paper, we present a comprehensive non-isothermal, one-dimensional model of the cathode side of a Polymer Electrolyte Fuel Cell. We explicitly include the catalyst layer, gas diffusion layer and the membrane. The catalyst layer and gas diffusion layer are characterized by several measurable microstructural parameters. We model all three phases of water, with a view to capturing the effect that each has on the performance of the cell. A comparison with experiment is presented, demonstrating excellent agreement, particularly with regard to the effects of water activity in the channels and how it impacts flooding and membrane hydration. We present several results pertaining to the effects of water on the current density (or cell voltage), demonstrating the role of micro-structure, liquid water removal from the channel, water activity, membrane and gas diffusion layer thickness and channel temperature. These results provide an indication of the changes that are required to achieve optimal performance through improved water management and MEA-component design. Moreover, with its level of detail, the model we develop forms an excellent basis for a multi-dimensional model of the entire membrane electrode assembly

    Onset of Vortices in Thin Superconducting Strips and Wires

    Full text link
    Spontaneous nucleation and the consequent penetration of vortices into thin superconducting films and wires, subjected to a magnetic field, can be considered as a nonlinear stage of primary instability of the current-carrying superconducting state. The development of the instability leads to the formation of a chain of vortices in strips and helicoidal vortex lines in wires. The boundary of instability was obtained analytically. The nonlinear stage was investigated by simulations of the time-dependent generalized Ginzburg-Landau equation.Comment: REVTeX 3.0, 12 pages, 5Postscript figures (uuencoded). Accepted for Phys. Rev.

    Current Profiles of Molecular Nanowires; DFT Green Function Representation

    Full text link
    The Liouville-space Green function formalism is used to compute the current density profile across a single molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of artificial time loops and backward propagations. Closed expressions for molecular currents, which only require DFT calculations for the isolated molecule, are derived to fourth order in the molecule/electrode coupling.Comment: 21 page

    Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

    Full text link
    We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small Vn_{n} clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider different cluster structures such as: i) a single V impurity, ii) several V2_{2} dimers having different interatomic distance and varying local atomic environment, iii) V3_{3} and iv) V4_{4} clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the v) V5_{5} and vi) V6_{6} structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.Comment: 7 pages and 4 figure

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Critical scaling of the a.c. conductivity for a superconductor above Tc

    Full text link
    We consider the effects of critical superconducting fluctuations on the scaling of the linear a.c. conductivity, \sigma(\omega), of a bulk superconductor slightly above Tc in zero applied magnetic field. The dynamic renormalization- group method is applied to the relaxational time-dependent Ginzburg-Landau model of superconductivity, with \sigma(\omega) calculated via the Kubo formula to O(\epsilon^{2}) in the \epsilon = 4 - d expansion. The critical dynamics are governed by the relaxational XY-model renormalization-group fixed point. The scaling hypothesis \sigma(\omega) \sim \xi^{2-d+z} S(\omega \xi^{z}) proposed by Fisher, Fisher and Huse is explicitly verified, with the dynamic exponent z \approx 2.015, the value expected for the d=3 relaxational XY-model. The universal scaling function S(y) is computed and shown to deviate only slightly from its Gaussian form, calculated earlier. The present theory is compared with experimental measurements of the a.c. conductivity of YBCO near Tc, and the implications of this theory for such experiments is discussed.Comment: 16 pages, submitted to Phys. Rev.
    corecore